TDA Progress Report 42-86

April—June 1986

Ulysses, a Functional Déscription and Simulation
Software System |

T. W. Griswold and D. F. Hendry

Microelectronics Technology Section

Current design tools for digital circuits and systems are not well-integrated among the
behavioral, gate, and transistor levels of design. Ulysses is a prototype software system
that consists of a description language, a description compiler, and a simulator that make
no distinction among these levels. The language is uniform over the entire range of
logical descriptions, the description is hierarchical with no fundamental restrictions on
depth or mixing of levels, and the simulator is fully integrated with the description. The
structure of the language, compiler, and simulator are described in terms of their rela-
tionships to the abstractions of physical systems that are made in order to create logical

descriptions and models of behavior.

I. Introduction

Design and implementation of a custom microcircuit
involves several levels of design and several technical disci-
plines. Currently available commercial design tools do not
provide good interfaces among these levels and disciplines.
In particular, the distinction between “logical” and *“‘behav-
joral” levels of description and simulation is sharp: The
logical level is handled by pre-defined and pre-compiled
internal models of logic modules, such as gates and flip-flops;
the behavioral level is handled by user-written procedures
in some language (such as PASCAL or C) that are compiled
and linked to the system. The user does not have direct access
to the internal data structures. As a result, the mixing of
descriptions and simulations at the logical and behavioral
levels is limited.

The Ulysses system is a set of computer programs that
provides a uniform language for description and simulation of

digital systems from the transistor-switch level through the
gate level to the functional-block level. It is fully hierarchical,
and descriptions and simulations at all levels may be mixed
without restriction. A basic concept is that all logical, func-
tional, and behavioral definitions are made in the same way,
namely by means of truth tables created by the user. The user
thus has full access to all internal data structures, and has full
control of the system (he also has full responsibility for the
correctness of all descriptions).

Ulysses is, in effect, an algebra of logical behavior. It pro-
vides a set of operators, function types, and data types that are

" used to form descriptions of logical systems of arbitrary size

and complexity, and to evaluate those descriptions (i.e., to
simulate the behavior of physical systems). The limit on the
size of the logic system that can be described and simulated
is set by the size and speed of the host machine, not by any
internal limitation imposed by Ulysses itself.

193

Ulysses was initiated as part of the Silicon Structures
Project (SSP) of the Computer Science Department of the
California Institute of Technology. It was developed to its
present state at JPL, as part of a development program for
VLSI design tools. It is written in MINT (Ref. 1), which
is a language that was designed for portability (i.e., machine
independence). MINT is defined in terms of a “virtual ma-
chine,” which contains a set of primitive functions that
provide the actual interface between the MINT language
and the host-machine hardware and operating system. Success-
ful porting of the virtual machine to a new host machine
guarantees that any program written in MINT (e.g., Ulysses)
will run correctly on the new machine. (The MINT system
includes a diagnostic program for verification of correct opera-
tion of the virtual-machine primitives.) MINT has been ported
at various times and by various organizations to a number of
machines, including Apple II, IBM PC.XT and PC-AT under
MS-DOS, 68000-based machines running UNIX-like operating
systems, VAX 11/780 running VMS, and Univac 1100. The
basic system at JPL used for development of MINT and
Ulysses is VAX 11/780 under VMS, with the virtual machine
written in C.

ll. Logical Representation of
Physical Systems

A. Levels of Abstraction

Description and simulation of digital circuits at the logic
level, that is, with signal values low and high, is an approxi-
mation to physical reality. The approximation is obtained by a
sequence of abstractions. The first is from physical structures
to lumped circuit elements. Structures created by doped
semiconductor regions, insulating layers, and conducting
layers are represented by device models: diodes, transistors,
resistors, capacitors, wires, and contacts. In addition to the
devices created explicitly for the desired circuit structure,
second-order devices, such as series resistances, stray capaci-
tances, and parasitic diodes and transistors coupled through
the substrate, must be included in the circuit representation
for good accuracy. The popular electrical simulation program
SPICE is designed to help extract these models from a geo-
metrical layout and to analyze the electrical circuit con-
structed from them.

The second abstraction is from the electrical representation
to a switch-level representation. Transistors are replaced by
switches that are either conducting or non-conducting, depend-
ing on their gate voltages. At this point, the circuit is still
electrical, and it can be analyzed by SPICE if the switches
are represented by relays. Signals are represented by amperes
and volts.

194

The third abstraction replaces wire voltages with logic
levels: If the voltage is above a certain threshold, the logic
value is high; if the voltage is below another threshold, the
logic value is low. This switch-level logical representation is
the one that is used most of the time in design and manual
checking of digital transistor circuits. The principle is simple:
When a transistor is off, it has a high resistance; when it is on,
it has a low resistance. An N-channel transistor is on when its
gate is high; a P-channel transistor is on when its gate is low.
When an electrical value is needed, such as the ratio of current
to load capacitance for calculation of voltage slew rate, the
electrical representation is immediately available; the circuit
diagrams are essentially the same.

The fourth abstraction is from switch level to gate level:
The switch-level circuit is divided into blocks, and the blocks
are replaced by logical modules that are represented by truth
tables and propagation-delay values. The delay values are
obtained by calculations and summations of internal voltage
slew rates at the switch or electrical levels, or by measurement.

In all of the abstractions described above, the description
of the circuit is directly related to the way in which it is built
out of transistors and other components. Higher-level abstrac-
tions depart from the structural description level, and take on
a flavor of behavior: They describe what the circuit does,
rather than how it is structured. An ALU, for instance, can be
constructed in a number of ways and still perform the same
computations. Complex circuits are generally defined and
developed at the behavioral level in terms of data objects,
modules with specified computational functions, and inter-
connections. They are then expanded hierarchically down to
the gate and transistor levels in specific implementations.

It would obviously be of great value to have a single lan-
guage for as many of these levels of abstraction as possible.
Ulysses was designed to cover the range from behavioral
descriptions to transistor-switch diagrams, that is, the entire
range in which logical description in terms of high and low
signal values is applicable. It is based on a relatively small set
of operators that handle data structures of arbitrary complexity.

B. Logic Description and Simulation

The key to digital-description systems is the way in which
electrical behavior is abstracted to form a logical description.
In general, node voltages are represented as the logical values
true and false. In positive logic, true is denoted variously by
T, 1, or H (high), and false by F, 0, or L (low). High means
that the node voltage is greater than some threshold value,
and low means that it is lower than some other threshold
value. Voltages in an intermediate state, below the upper
threshold and above the lower threshold, are treated as part of
a transitional state of vanishingly small duration. The transi-

tional state is represented as an ‘“‘edge,” either rising (R),
or falling (F). Representation of edges is important in descrip-
tions of synchronous digital circuits, because edge-triggered
flip-flops are used to control system timing.

Logic modules (gates, flip-flops, microprocessors, and
memories) are abstracted to functions with input and output
argument lists. The input arguments correspond to signals
connected to input ports, and the output arguments corre-
spond to signals connected to output ports. A function drives
its output signals to values determined by the values of its
input signals and the behavior of the function, just as an alge-
braic function does. Unlike ordinary algebraic functions,
however, logical functions that describe circuit behavior must
incorporate the notion of propagation delay: Output value
changes are delayed in time with respect to input value changes.
The logic function must return the delay time for each output
signal, together with its new value.

Simulation of the behavior of such a system is carried out
by assigning logical values to the inputs to the system, and
executing the functions as dictated by the connectivity of the
system. The signal values at the outputs of the system describe
its behavior. The connectivity, in effect, is described by the
input/output structure of the functions: The outputs of one
function are the inputs of another, corresponding to the way
in which the wires of the hardware implementation are con-
nected between the functional modules. Wires and module
ports that are connected together form a circuit node; a
logical signal value is assigned to represent the voltage of the
node.

A logical abstraction to a two-level (binary) representation
cannot deal properly with systems in which a node voltage
is in the intermediate state for any length of time, that is, the
voltage lies between the lower and upper thresholds for a long
time. Such a condition may arise, for example, when two
modules try to drive a signal at the same time. If one is driving
it high and the other driving it low, the resultant voltage can
have any value;, the state is not known. The concept of
“strength” is introduced to deal with such situations: A
signal of greater strength always wins in a contest with a
signal of lesser strength. This approach is used in wired-or
and tri-state constructs, in which a pull-up resistor (strength =
weak) keeps a node high unless one or more drivers (strength =
strong) is turned on to pull the node low. When two drivers
of equal strength try to pull the node in opposite directions,
the result is represented by U or X, for undefined. The notion
of an open circuit, or high impedance, is closely related to
wired-or and tri-state structures: A function is either driving
a node or it is turned off. The open-circuit condition may be
represented either by a high-impedance value Z, or by zero
strength.

Modules represented by truth tables have definite input and
output ports. They are unidirectional, and their output values
can be looked up in a table when their input values are known.
The input and output signals must be known at compile time,
that is, they must be determined by the connectivity of the
circuit. Bidirectional elements, such as resistors, capacitors,
and pass transistors, do not behave this way in full generality.
Input and output signals are determined at run time by the
signal values, not at compile time by the connectivity. In many
cases, however, such elements are connected in such a way
that signals flow in only one direction. They are effectively
unidirectional. A pass transistor, for instance, that is con-
nected between the output of one unidirectional module and
the input of another has definite input and output ports.
It is unidirectional in that particular connection, Elements
that cannot be treated as unidirectional cannot be handled
properly in the gate-level abstraction; they should be inside
some block, where they can be dealt with at the electrical or
switch level.

lll. The Ulysses Description
and Simulation System

A. Description Language

Unlike most description and simulation systems, Ulysses
makes no fundamental distinction between descriptions of
behavior and implementation structure. Its central principle
is that the “level of complexity” is related to the complexity
of the functions and the data structures, not to the complex-
ity of the descriptive language itself. An algebraic notation is
quite independent of functional simplicity or complexity.
Accordingly, Ulysses provides a relatively small number of
language “constructs” that deal with functions of unrestricted
complexity. The primary constructs are shown in Table 1.

There are no built-in primitives. The user defines all func-
tions, and he therefore has complete control of them at all
levels of description. He may use functions from a library or
any other source, or he may build his own at any time and use
them immediately as components in his circuit. Functions
from all sources may be intermixed freely.

The descriptive part of Ulysses consists of a language and a
compiler. The language provides constructs for definition of
functions, logical signals, and connections. A “scope” mecha-
nism provides a means for controlling the visibility of object
names, which is essential for hierarchical descriptions. The
compiler generates data structures that are used by the simu-
lation part of Ulysses to exercise the circuit. There are two
ways to use the system for description. In the first, which
might be called bottom-up, a logic schematic can be tran-
scribed, module by module and wire by wire, into a Ulysses

195

description. The modules are represented by functions, and
the wires are represented by signals. Groups of modules and
wires that are repeated can be collected together into single
functions that are given names and treated as units. A hier-
archical description can be composed to any depth in this
way. In the second, which might be called top-down, a behav-
ioral description is expressed in terms of functions and sig-
nals, and is expanded into a hierarchy of functions and sig-
nals. Since the user controls all functional definitions, the
top-down and bottom-up descriptions may be used in any
combination, to any depth of hierarchy, and at any level of
complexity.

A Ulysses description is written as an ASCII text file, using
the constructs listed in Table 1:

Signals (SIG) are variables that represent circuit nodes. A
signal has a name and a logical value of low or high, L and H.
In order to be able to handle edge-sensitive functions, the
domain of values in Ulysses includes rising and falling edges,
R and F. An undefined value, U, signifies an unknown signal
value (which may or may not be an error value), and high
impedance, Z, means there is an open circuit. Signals are
declared with the SIG construct: SIG A1 CLOCK Q.

Replication (REPL) is used with signal declarations to
create signal vectors, or arrays of any number of dimensions.
Vector and array components are specified by index values.
For example, REPL[7...0] SIG BUS creates an 8-bit signal
vector. BUS[2] is a scalar signal, and BUS[2 3] is a 2-bit
signal vector. Ulysses has a full set of operations for composi-
tion, decomposition, and manipulation of signal vectors and
arrays.

Case tables (CASETABLE) are definitions of primitive
logic functions in truth-table form. They are the only form of
functional definition in Ulysses. The user defines all func-
tionality with them; there are no built-in definitions.

A case table consists of one or more rows of input signal
values, output signal values, and output signal-delay values.
There may be any number of input columns and output
columns. For input values, a “don’t care” notation (X) is
provided, which can be used to condense tables. When a table
is referenced, the values of the input arguments are compared
with the values stored in the input columns, starting with the
first row and proceeding through the table. When a match is
found, the output values and delays for that row are returned.
The delays represent propagation delays of signals in the mod-
ule that the function describes. If no match is found for any
user-written row, the values U and zero delay are returned for
all output columns. A single delay value may be given for the
table as a whole, or delays may be specified separately for each

196

row and each output column. The latter method allows the
user to define, for example, different delays for low-to-high
and high-to-low transitions.

Devices with storage are handled by a feedback mechanism,
in which the *0ld” value of an output signal is included in
the argument list when the case table is referenced; the case
table returns the “new” value. The extension of the input-
argument list is done inside a template that references the
case table (see below).

A case table for a JK flip-flop illustrates the essential fea-
tures. It has an asynchronous clear input, and it is negative-
edge triggered. The F/B (feedback) statement in the header
is omitted if no storage is involved, that is, for combinational-
logic functions.

CASETABLE C_JKFF ::
DOMAINLHUZFR

*/ Itsname is C_JKFF

#{ Names of signal
values

*/ Four inputs, two
outputs

*/ Both outputs are
fed back

*/ Delay value for all
transitions

PORTS CLR CLK J K Q QB */ InputsCLRCLK]J

K, outputs Q QB

L H */ Clear active low

H F L L Q QB */ Nochange: copy
old outputs to new

*/ Synchronous load
Q low

*/ Synchronous load
Q high

*/ Toggle: copy old
Q to QB, old QB
to Q

*/ Catch glitches —
return U values

1/0 (4 2)
F/B2

DELAYS 20

U U
Q QB */ If none of the
above, do nothing

ENDCASES

This case table is typical of user-created functional defini-
tions. It may or may not be a correct representation of a
different JK flip-flop in another application; that judgement
is up to the user. The case table may be edited to implement ~
the desired behavior.

Case tables can represent transistors, in a limited sense.
A transistor is treated as a switch with a control port (gate
or base) and a switched data path. The limitation comes from
the fact that a MOS transistor is like a resistor, in that it is
bidirectional: The current can flow in either direction. This
behavior cannot be represented by a function with specific
input and output signals. If the transistor is connected in such
a way that the input and output ports never change, it can
be represented as a case table. Pullup and pulldown transistors
meet this requirement and can be represented in case tables,
because the terminal that is connected to the supply terminal
(power or ground) is the source, the other terminal is the
drain (output), and the gate voltage (input signal) is referenced
to a specific node (the source node). Pass transistors, on the
other hand, are inherently bidirectional, because the direction
of current flow is determined at run time by the signal values,
rather than at compile time by the connections. If the nature
of the circuit is such, however, that the direction of signal flow
{which is not necessarily the same as the direction of current
flow) is fixed, the pass transistor can often be represented in
a case table.

Case tables handle only scalar signals directly; signal vec-
tors and arrays are handled by case table references in
templates.

Templates (TEMPL) represent circuit modules. A template
has a name, a list of input signals (dummy arguments), signat
definitions, any number of definitions of actions (DEFs), and
a list of output signals. Connectivity is defined by the relation-
ships among input and output signals of functions. A template
may reference case tables, other templates, or itself. The DEF
construct defines functional relationships. Its form is

DEF output-signal list = function_name (input-signal list)

As described later, the basic action of the Ulysses simulator is
to drive DEFs whenever one or more of their input signals
change value. Driving a DEF schedules all of its output sig-
nals to assume new values at later times, as defined by the
signals’ delay values.

There is no notion of a sequence of events in a template;
all actions are simultaneous. Consequently, the order in which
the DEF statements are written has no effect on the meaning
of the template.

The template example below illusirates several features of
the construction. The C_JKFF case table listed above is the
primitive behavior definition; the feedback of outputs to
inputs is done in the template. The internal signals are vectors
with four components.

TEMPL JKFF = << PARS */ Dummy argument names
(SIG CLEAR CLOCK JK)
REPL[3..0] JK */ Jand K are 4-bit signals
REPL[3...0] SIGQ QB */ Internal 4-bit signals
DEF Q QB @ C_JKFF */ Qutputs fed back to inputs
(CLEARCLOCKJK
QQB)
QQB > #/ Return two 4-bit signals

The line REPL[3...0] SIG Q QB contains the SIG keyword,
so it creates two internal signal vectors of four components
each. The names Q and QB are private to the template. The
line REPL[3...0] J K does not contain the SIG keyword, so it
does not create signals; it tells the compiler that the J and K
inputs are 4-vectors. The output signals are listed in the final
line. In this example they are the two 4-vectors that are the
outputs of the JK flip-flops. The case table is referenced once
for each component, which generates, in effect, four distinct
copies of the flip-flop. The CLEAR and CLOCK inputs are sig-
nal scalars. Ulysses fans them out to provide these inputs to
all four copies of the flip-flop.

In the particular case of references to case tables with feed-
back, the template construction listed above is mandatory,
because it is the only way in which the case table can be pro-
vided with the six inputs (I/O plus F/B) that it expects.
Higher-level references to the template JKFF supply only the
four “normal” input values (CLEAR, CLOCK, J, and K).
The feedback mechanism that implements storage is hidden
inside this template. In effect, storage is implemented as a
case table wrapped in a template.

Templates may reference other templates, which provides
the means of constructing a hierarchical description of a digital
system. In some other template, for instance, there might be
the line

DEF A B = JKFF(RESET PHI1 P Q)

This DEF references the template JKFF defined above. A and
B must both be present, and they must be defined as 4-vectors,
because JKFF returns two 4-vector values. Another template
might reference this one, that template might be referenced by
another, and so on upwards in the hierarchy.

Scopes (SC.) provide the means of controlling the visibility
of names in the hierarchy. A scope may be thought of as a
black box with a name. All structure inside the box is invisible
from the outside. The only communication with it is through
the inputs and outputs. A scope may be “entered” by giving
its name, which is equivalent to removing the cover of the
box: The internal names become visible. It is “exited” by

197

the END statement, which is equivalent to replacing the
cover.

Templates are scopes. Their internal names are private,
that is, invisible in the scope of the referencing function,
unless the template has been entered and not yet exited.

Instantiations of circuit blocks are created as scopes. They
consist of signal definitions, declarations of inner scopes, scope
names and END statements for entering and exiting scopes,
and DEF statements that define the functionality and
connectivity.

The scope mechanism provides the means for identifying
particular instances of modules that are defined as templates
and used repeatedly in the system. The internal names of the
signals in a particular template are the same in all instances
of the template, but the names for a particular instance are
made unique by concatenating the template name with the
names of the scopes that were entered in sequence to get at
the signal. For example, the names Q and QB in the template
JKFF are private to the template. A particular instance of the
template, which corresponds to a physical part, might be
extracted in a netlist with the name COUNTER.INPUT.Q,
where ¢ signifies concatenation of names, and COUNTER
and INPUT are scope names.

B. Compiled Data Structures

Compilation of the description of a digital circuit generates
the data structures shown in Table 2.

Each signal (scalar or vector component) has a number
assigned to it. The number is its index into the array of signal
records. For each signal, there is a dependency list that con-
tains the numbers of all signals that are driven by functions
that are driven by the signal. In other words, it is a list of all
signals that are affected by changes in that one particular
signal’s value. There is also a pointer to the function that
drives the signal, that is, to the function named in the DEF
statement that defines how the signal is driven. (A signal can
be driven by only one DEF statement.)

At the address of the signal’s driving function there are two
pieces of information: the address of a list of the names of
its arguments, and the address of a list of elementary simulator
actions that evaluate the function.

The argument list contains the signal numbers of the input
and output arguments and the address of the compiled case
table (i.e., primitive function) that is to be executed. (The
description compiler expands the hierarchy of template
references down to the primitive-function level in order to
generate the argument lists.)

198

The run-time function is usually the implementation of a
single DEF statement at the primitive-function level, that is,
the execution of a single case table reference. There are four
elementary actions:

(1) Get the value of an object in the argument list and
push it on the operand stack.

(2) Get the address of an object in the argument list and
push it on the operand stack (the address of a signal
is its number).

(3) Execute the case table whose address is on the stack.

(4) Schedule the signal whose address, new logic value
and delay value are on the stack.

The construction is more general than this, however; any
Ulysses function can be executed, using the operand stack for
communication of arguments. RAM and ROM behaviors
have been implemented compactly as general functions. While
they can be implemented with case tables and templates, the
amount of host-machine memory needed for a case table
description of a large RAM or ROM is excessive, and the user
has to wrestle needlessly with the details of addressing and
read-write control if he is not actually building a RAM, but
only using its behavior in the description of a digital system.

The way in which these structures are used is as follows:
The signals that are dependent on a particular signal are in
its dependency list. When a signal changes value, its depen-
dency list is scanned in order to mark the dependent signals
for processing. A dependent signal is processed by executing

" the function that drives it. The pointer to the driving function

gives its location and the location of its arguments. The
execution of a case table results in new value and delay pairs
for all of its output signals. The simulator uses the delay values
to schedule the output signals to change value at the time
“now” plus delay.

C. The Ulysses Simulator

The notion of time is implemented as a linearly increasing
quantity, digitized into “slots.” Each slot has a number, There
is a slot counter, whose value is the current slot, or “now.”
When the slot count is N, the time is within the range corre-
sponding to N times the width of a slot in some time unit
(e.g., one nanosecond). In each slot, a signal has a value
selected from the domain L(ow), H(igh), F(alling), R(ising),
U(ndefined), and Z (high impedance). This treatment of time
is similar to the way in which logic analyzers deal with it.

Associated with each slot is an event list, which contains
the names and new values of all signals that have been scheduled
to change value in that slot. The simulator has an event counter.

Every value change generates an event, for which the event
counter is incremented. When the slot counter advances
to a new slot, all of the events in the slot’s list are processed.
The event counter is decremented as each list element is
processed by evaluating the functions that drive the signals in
its dependency list. Each evaluation results in a new value and
delay pair for each of the function’s output signals. Each
new value is an event, and it is scheduled in (i.e., appended to
the event list of) the slot whose number is current-slot plus
delay.

The simulator is initialized with the slot counter and event
counter set to zero, and all event lists empty. All internal
signal values except those connected to power or ground are
set to U and the system is driven once, in imitation of a power.
up sequence. The simulator is started by forcing one or more
input signals to particular logic values in particular slots. Each
forcing action is an event: The signal name and value are
scheduled in the specified slot, and the event counter is
incremented. After all forcing events have been specified,
the RUN command is issued. The simulator processes the
forcing events, which generate new events, which are processed
and which generate new events, et cetera. The event counter
follows the progress of the computation, being incremented
for new events, and decremented as events are processed.
The simulator runs until the event count returns to zero.
The state of the system at stop time is preserved, that is, the
values of all signals are remembered. A new cycle is started
with a new set of forcing events, followed by the RUN
command.

The simulator does not know or care what the individual
functions are. It simply applies them to signals, as dictated by
the event lists. Simple gate-level functions are treated in the
same way as functions representing large, complex modules.
It is a mixed-level simulator that can exercise circuits at all
levels and in any combination of levels, from transistors
(when they meet the requirements of case table representa-
tion) through logic gates to functional blocks of arbitrary
complexity. '

IV. Future Development of Ulysses

There are a number of extensions and improvements that
are needed for a full capability. Some are fundamental, some
are cosmetic. Only the key fundamental extensions will be
described; cosmetic improvements include improved error
diagnostics and reporting, and an interface to a graphical
means of generating circuit descriptions.

A. Netlist Generation and Acceptance

The compiled data structures described above define the
circuit completely at the logical level. They provide the infor-

mation needed by the simulator to analyze the behavior of
the circuit. They are in a form, however, that is meaningful
only to Ulysses. In order to use the circuit description in
some external context, such as a schematic-capture editor in
an engineering workstation, it is necessary to generate a netlist
for it; in order to replicate in Ulysses a circuit description
generated externally, it is necessary to accept a netlist from
the external source. A netlist is a list of nodes. Each list ele-
ment contains the name of the node and a list of module-
terminal names connected to it. Associated with the netlist
is a description of each module: terminals, logical behavior,
delays, strengths, etc. Netlists and module descriptions are
generally written in ASCI! format. Beyond this, there is no
generally accepted standard format for composing and com-
bining the lists of nodes and module ports. Generation and
acceptance of netlists from one system to another is essentially
a problem of format translation. One of the main problems
is to work out the correspondence of names in the description
hierarchy (in Ulysses, scope names) and names in the netlist.
Lacking a general netlist format, it is necessary to write a
separate translator for each external system. A standard for-
mat, called NIF (Netlist Intermediate Form) has been defined
for Ulysses. Development of a netlist capability for Ulysses
would have two stages:

(1) Write translators directly for specific systems, such as
the Mentor CAE workstations that JPL uses, in order
to work out the concepts and details and to debug
the translation process.

(2) Develop the NIF concept, write the translators between
Ulysses and NIF once, and write the translators between
NIF and external systems as needed.

The advantage of inserting NIF into the process is that it
separates the details of the Ulysses description from the
details of the translation process.

There is a more general advantage to a standard netlist
format: In the general case, with V different netlist formats,
and with separate translators needed for generation and
acceptance, a total of N(N-1) translation programs must be
written for a complete data-interchange capability, With a
standard format, two translation programs must be written for
each external system: one into NIF, and one out of it. The
total translation-program count becomes 2V, which is sig-
nificantly smaller than N(V-1), for large N. The disadvantage
of having to use a two-step process for translation (external —
NIF - external) is relatively minor. Development of the stan-
dard netlist format concept is advantageous, independently of
the Ulysses system. The NIF concept can be developed, pend-
ing the arrival of a generally accepted format, such as has
been proposed in the EDIF (Electronic Data Interchange
Format) documentation that is currently being reviewed by

199

the electronic industry, or a format associated with the VHDL
(VHSIC Hardware Description Language) concept sponsored
by the U.S. Department of Defense.

B. Multiple DEFs

At present, Ulysses allows only one DEF statement for each
output signal value. This restriction prevents the user from
defining conditional executions in the full behavioral sense;
he is forced to construct them as actual circuit elements.
For example, an ALU executes one of a number of logical
operations, such as ADD, SUBTRACT, AND, or OR, depend-
ing on the value of an index signal vector. If the vector is three
bits wide as in the 2901 bit-slice processor, one of eight
logical operations is selected. An extension has been mapped
out that generalizes the DEF construct to include a logical
condition based on signal values: If the condition is true, then
execute the DEF; else do nothing. This construct will be quite
general in nature. It is the analog in the rule-based Ulysses
system of the IF-THEN-ELSE construction in procedural lan-
guages. The present Ulysses system of a single DEF per output
signal is a special case: The condition is always true.

C. Removal of Edges From the Signal Domain

Edge values (rise and fall) were added to the signal domain
in the early stages of development, in order to have a means
of treating edge-triggered components. They do not properly
belong there; they are properties of the components, not of
the wire voltages. The case table construct can be modified to
test for edges in those inputs that are edge-sensitive. When this
is accomplished, the case table definition will be shorter and
cleaner, because all of the edge cases in inverters and gates
may be deleted. The user will have the option of using them as
he sees fit; the case table will know how to deal with them
when they are encountered.

D. Removal of Strength From the Signal Domain

The development of Ulysses lags behind that of more con-
ventional simulators in this regard: Drive strength is expressed
as signal values (e.g., H = strong high, and h = weak high),
rather than as a separate attribute associated with node capaci-
tance and module output currents. An extension has been
mapped out tentatively: Node voltage is expressed as an
n-bit digitized value. If n = 1, the representation is binary, or
boolean, as it is at present. If # > 1, the representation is
intermediate between boolean and real-variable. The concept
of strength may then be included as an abstraction of Ohm’s
law, in that it can deal with currents, voltages, and admit-
tances. The basic principle is that the evolution of node volt-
age may be tracked by calculating its derivative and extrapo-

200

lating to the upper or lower threshold voltage; a delay time
may be extracted from this extrapolation. In the simplest
cases, the derivative of the node voltage is determined by
drive currents and node capacitances:

I=C+dv/de,

dr=(C/D - dV.

The quantity dz is the predicted time delay before reaching a
threshold voltage. The quantity dV is the difference between
the current voltage value and the threshold voltage. The
quantity C/I is related to signal strength, as shown in the
following dimensional argumeni:

I=g-V, g = conductance

C/I=Cl(gV)=(Clg) - (1/V).

The quantity C/g has the dimensions of time. Strength may
therefore be defined as its reciprocal, with the property that
high strength corresponds to short time. In other words, a
strong signal leads to short delay values. The reason for defining

strength in terms of conductance rather than current is that,

at least in a simple constant-conductance model, the conduc-
tance is a fixed circuit parameter.

It is anticipated that development of a clean method of
scheduling and rescheduling events will be one of the most
difficult tasks in implementing this approach.

V. Summary and Conclusion

Ulysses is a system that provides a description language for
digital circuits of arbitrary complexity, and a simulator for
predicting their behavior and performance. The description
language is uniform and consistent over the range of descrip-
tions from arbitrarily high behavioral levels down to the
detailed transistor-switch level. At the transistor-switch level,
the correspondence of the circuit to an actual electrical and
physical implementation is direct: Each transistor, wire, and
contact has an electrical and physical counterpart.

The fundamental usefulness of this system is that the user
can follow the hierarchical structure from the top behavioral
level down to the transistor level selectively, in as much or as
little detail as required. Since there are no discontinuities in
the language over this entire range, the integrity of the descrip-
tion is guaranteed. (It should be pointed out that Ulysses
knows only what the designer tells it about the circuit. If the

desigh or the circuit parameters contain errors, Ulysses will
propagate those errors faithfully.)

The uniformity of description from the switch level upward
can potentially be used to control the transistor implementa-
tion from the architectural level. Such control would be valua-
ble in applications in which transistor-level factors are impor-

tant at the system level: power dissipation, sensitivity to
single-event upsets, testability, and fault tolerance. Current
methods of investigation are based on building the hardware
and testing it; modelling such behavior in software is less
expensive and more flexible. A major development problem,
in general, is to make the modelling sufficiently accurate to
provide useful results.

Reference

1. Godfrey, M. D., D. F. Hendry, H. J. Hermans, and R. K. Hessenberg, “Machine-
Independent Organic Software Tools (MINT),” Academic Press, Orlando, Florida,

Revised 2nd Edition, 1985.

201

202

Table 1. Description constructs®

Name Meaning

SIG Signal, a variable representing a circuit node.

REPL Replication of signals to form signal vectors.

CASETABLE Truth table. Defines the behavior of primitive
functions.

DELAYS CASETABLE timing. Represents propagation
delay.

TEMPL Template. Defines interconnections of mod-
ules, and enables building new functions.

DEF Defines action: DEF outputs = function
(inputs).

SC. Scope. Defines visibility of names in the

hierarchy.

aUlysses keywords are capitalized.

Table 2. Compliled data structures

‘Structure

Contents

Signal record

Driving function

Argument list

Run-time function

Dependency list
Pointer to its driving function

Address of the argument list
Address of the run-time function

List of input-signal names
Address of an executable case table image
List of output-signal names

List of actions: Get input values
Execute the case table
Schedule output values

